

Problem 5 Semiconductor Materials

(4 pts) A poor quality graphene sample is prepared with the shape shown below. The numbered features (pins) are considered to be perfect contacts. Conventional current injected at pin 1 and extracted at pin 4 is 3μ A. Pins 2 and 3 contact the horizontal bar separated by 8 μ m, and the voltage measured across pins 2 relative to pin 3 is 20 mV. Pin 3 and 5 contact the bar separated by 2 μ m. The voltage measured at pin 3 relative to pin 5 is plotted vs a magnetic field applied normal and into the page. Assuming one type carrier, what is the mobility, sheet carrier density, and carrier type (justify your answer).

q	$1.6 \times 10^{-19} \text{ C}$	electron
ϵ_o	$8.85 \times 10^{-14} \text{ F/cm}$	permitti
K_s	11.8 (Si)	relative
K_o	$3.9 (SiO_2)$	relative
k_B	$8.617 \times 10^{-5} \text{ eV/K}$	Boltzma
h	$6.63 \times 10^{-34} \text{J s}$	Planck o
m_o	$9.11 \times 10^{-31} \text{ kg}$	electron
k_BT/q	0.0259 V at 300 K	thermal
c	$3 \times 10^8 \text{ m/s}$	speed of

electron charge permittivity of free space relative dielectric constant relative dielectric constant Boltzman's constant Planck constant electron mass thermal voltage speed of light